Madelung's constant
Problem 1. Prove that $$\sideset{}{'}\sum_{i,j,k=-\infty}^{\infty} \frac{(-1)^{i+j+k}}{\sqrt{i^2+j^2+k^2}}=12\pi \sum_{\substack{m,n=1\\ m,n\;\mathrm{odd}}}^{\infty} \mathrm{sech}^2\bigg(\frac{\pi}{2}\sqrt{m^2+n^2}\bigg)$$ where the prime indicates that the pole $(i,j,k)=(0,0,0)$ is left out. Solution 1. It follows by symmetry that $$\sideset{}{'}\sum_{i,j,k=-\infty}^{\infty} \frac{(-1)^{i+j+k}}{\sqrt{i^2+j^2+k^2}} = \sideset{}{'}\sum_{i,j,k=-\infty}^{\infty} \frac{(-1)^{i+j+k}(i^2+j^2+k^2)}{\sqrt{(i^2+j^2+k^2)^3}}\\ = 3\sideset{}{'}\sum_{i,j,k=-\infty}^{\infty} \frac{(-1)^{i+j+k}\cdot i^2}{\sqrt{(i^2+j^2+k^2)^3}}\\ = 3\sideset{}{'}\sum_{i,j,k=-\infty}^{\infty} \frac{(-1)^i i^2(-1)^{j+k}}{\sqrt{(i^2+j^2+k^2)^3}}$$ Now using the Mellin transform $$\mathcal{M}\{f(x)\}(s)=\int_0^{\infty} x^{s-1}f(x)\,dx$$ Notice that for $p>0$, we have $$\mathcal{M}\{e^{-px}\}(s)=\int_0^{\infty} x^{s-1}e^{-px}\,dx=\int_0^{\infty} \bigg(\frac{u}{p}\bigg)^{s-1}e^{-u}\,\frac{du}{p}...